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In this work, we present the mapping formulae for the contraction of the third-order 
reduced density matrices represented in the basis of the irreducible representations fiR) 
of the symmetric group S 3 into the second-order ones which are represented in the basis 
of the IR of group S 2. These algorithms, which can be useful in several fields, have been 
applied for the approximation of reduced density matrices within the spin-adapted 
reduced Hamiltonian theory. Some results obtained with this procedure are also presented. 

1. Introduction 

The spin-adapted reduced Hamiltonian theory [ 1 - 3 ]  has recently been shown 
to be a valuable approach to the study of  the electronic structure of  atoms and 
molecules. Using the eigenvectors of  second-order spin-adapted reduced Hamiltonian 
matrices (2-SRH) and within the independent-pair (IP) model, a direct approximation 
of  the second-order reduced density matrix (2-RDM) has been carried out, obtaining 
very satisfactory results in the study of  light atoms, ions and small molecules [4-6].  
A generalization of  this model to that of  independent groups of  more than two 
electrons improves the accuracy of  the calculations. Indeed, when the number of  
electrons g in the group approaches that of  the system N, the model tends to that 
of  the full configuration interaction (FCI) method. A preliminary calculation, using 
the eigenvectors of  the third-order spin-adapted reduced Hamiltonian matrices (3- 
SRH) and the independent-trios (IT) model was carried out [7] and the results, 
obtained by an approximation of  the third-order reduced density matrix (3-RDM), 
showed a marked improvement over those obtained using the IP model. So, the use 
of  the three-electron space can be appropriate considering that good results have 
been obtained with no high computing expenses. 
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Since the use of spin-adapted reduced Hamiltonian theory requires the 
diagonalization of the g-order spin-adapted reduced Hamiltonian matrices (g-SRH), 
it is convenient to reduce as much as possible the size of these matrices. For this 
purpose, the use of the spin-free formulation and the permutation symmetry is 
advisable. In view of this, a general algorithm to calculate the 3-SRH expressed 
according to the different irreducible representations (IR) of the symmetric group 
$3, the permutation group of three objects, was reported [2]. In this way, using the 
IT model [7], a block factorized 3-RDM is also obtained. 

Although the quality of the directly approximated 3-RDM is better than the 
directly approximated 2-RDM, for the study of observables it is sufficient to work 
in the two-electron space. So, once the 3-RDM has been calculated, the best procedure 
is to contract this permutation symmetry-adapted 3-RDM into the corresponding 2- 
RDM. Since this latter matrix is also represented in the basis of the IR of the $2 
group, the contraction involves some delicate algebra, which will be described here. 
The final formulae are useful for computational purposes. We have focused our 
attention mainly on spin-adapted reduced Hamiltonian theory, but these algorithms 
can also be applied in other fields such as spin-coupled valence bond theory [8] or 
coupled cluster techniques [9], where high-order RDM are needed. 

The organization of this paper is as follows. In section 2, the notation and 
the necessary basic formalism are presented. In section 3, the contraction algorithms 
for each of the different cases are given. Finally, in section 4, we give a comparison 
between the results obtained with the IT and the IP models. 

2. Notation and concepts 

The generalized spin-flee replacement operator of order g is [9-16] 

. . . . .  !" = Z .  • Z b+ 
.11 .... J, " ,la1"" . b ~ % b j , % .  . .b j la l ,  (1) 

m % 

which is defined in terms of the creators/annihilators of an electron b+a/bia, in 
orthonormal orbitals i with spin o'. 

The non-relativistic Hamiltonian of an N-electron system can be expressed 
as a function of the second-order replacement operators [3], 

1 2~.ik 121 = ~ ~_~ { i j l k l }  ~ j t .  (2) 
i,j,k,l 

In eq. (2), { i j l k l }  denote the effective two-electron integrals. For practical purposes, 
the one-electron integrals are transformed into two-electron ones so that they are 
included in the symbols { i j l k l } .  In this way, only one matrix, { i j l k l } ,  is used to 
define the Hamiltonian /q, which simplifies the calculation of the g-SRH 
matrices [1]. 
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In the following, A, f~ . . . .  will denote N-electron functions, eigenfunctions 
of the spin operators ~2 and Sz for a given value of the total spin quantum number. 
A representation of the Hamiltonian (2) in the N-electron space is the full configuration 
interaction (FCI) matrix ~A,n. This matrix may be contracted to the g-electron 
space (g < N) and this contracted form is by definition a g-SRH matrix, 

- j ,  ..... j ,  I J, ..... J, (3 )  t 

A,KI 

The main property of the g-SRH matrices is that they can be written as 

gH = ~ E~e gD ~e, (4) 
i£ 

where E~e stands for the energy of the eigenstate I~)  of the system and gD ~e is the 
g-RDM of the same state. This means that all the information about the N-electron 
system is contained in the g-SRH matrices, albeit the information concerning a 
given state I~ )  cannot be extracted in a formally exact way. A very important 
feature of these matrices, which is what renders them useful, is that they can be 
directly and very efficiently constructed using just the integrals { i j l k l } ,  thereby 
avoiding a previous evaluation of the FCI matrix [1-3].  

Our interpretation of the eigenvectors of the g-SRH matrices is that they 
describe groups of g-electrons which, on average, can be considered as 
independent [7]. This interpretation leads to the independent pair (IP) model for 
g = 2, the independent trio (IT) model for g = 3, etc. In these models, the reduced 
density matrix of order g corresponding to a given N-electron state is approximated 
by a weighted sum of density matrices corresponding to different states of a group 
of g-electrons. These states coincide with the eigenvectors of the g-SRH. Note that 
in this approach, the evaluation of the N-electron wave function is avoided. 

The employment of the SRH theory as it has been presented would require 
the construction of g-SRH matrices and the corresponding g-RDM whose size, for 
a given basis set of K functions, is K s x K g, and so a considerable expense in 
computer memory would be needed, mainly when a large basis set is used. Fortunately, 
these cumbersome limitations can be partially removed when the matrices are expressed 
in the basis functions of the IR of the symmetric group S s. In these new basis sets 
the matrices are block factorized and an independent treatment of each block can 
be made. 

3. The permutation symmetry-adapted contraction algorithm for the 3-RDM 

Let us start by considering a general and simple contraction mapping from 
+ 

the g-RDM into 2-RDM. This is based on the well-known rule ~,i,a biabia = number 
of electrons, sO that 
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1 

and so 

where 

and 

2 D P r  = g! gl3pri3i4 . . . . .  i s 
- - q s  Z 2! ( N  g + 1) (N - 2) ~qsi3i4 . . . . .  is , (5) 

i 3 , i 4  . . . . .  i s - -  . . . 

2 F  pr  
(~ ]  -qs 1~£) (6) 21")Pr = 

- qs 2! 

gF~. Pm3t4 " ' "  Jg 
g D p r i 3 i  4 . . . . .  is (f~" I --qsi3i 4 . . . . .  i s [ f ~ )  

- -  qsi3i 4 . . . . .  i s = g! (7) 

are the 2-RDM and g-RDM, respectively, corresponding to a state IS£) (no further 
explicit reference needs to be made to the I~)  state, which has been included only 
for the sake of  correctness). 

In the expressions (5)-(7),  the order of the upper and lower indices is not 
fixed. The 2-RDM and g-RDM are represented in a basis of simple products of 
orbitals, each of which is denoted by a single letter. Due to the anticommutation 
rules for Fermion operators, a simultaneous permutation of upper and lower indices 

2 pr  2 rp 2 pr  2 pr  leads to identical matrix elements (that is, D~s = D'sq, but D~s ~ D~sq ). Later 
on, we will see that when a given order is imposed on the letters of the upper and 
lower indices, the meaning of the indices is changed. 

Recalling the transformation formulae to the IR basis of  the $2 permutation 
group (see appendix), we have 

(i) p < r a n d  q < s  

2Oqp:(+) = 2.p  ~ qs -F 2Dspqr 

in 2Dffsr(+), the upper and lower indices represent the symmetric (+) (antisymmetric 
( - ) )  functions built from the products ~vr and qs. On the other hand, when no 

z pr  indication of the symmetry exists, as in Dqs, these indices represent, as we have 
said, simple products. Because of (5), we may write 

g! S "  ( gDPr!3!4 ..... !s + gDPr!3i4 ..... !81 (8) 
2 o ( + ) =  DPr 2 ! ( N -  g + 1) ( N - 2 )  ~ ~ - - q s , 3 t  4 . . . . .  t& --sq,3,  4 . . . . .  , g ] "  

• " " i 3 . i  4 . . . . .  i g  

(ii) p = r and q < s 

2&f(+)  = 2DPP,q  
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so g! 
2 D P p ( + )  = E gDPPi3i4 . . . . .  is 

and  qs , , ~ I ~ ( N  - g + 1) . . . (N - 2) i3 ' i4 . . . . .  ig --qsi3i4 . . . . .  ig (9) 

21")PP (--'~ = O. 

(iii) Finally, for p = r and q = s, 

2Dq"q"(+) = 2r: ~qq 

and 
g~ 

2Dff f f (+) = 2! ( N  - g + 1) . . . (N - 2) ~ gDPPi":4 ..... :' (10) 
i 3, i 4 . . . . .  i& --qq=3q . . . . .  iS " 

RDM 
Expressions (8)-(10) give us the block-factorized 2-RDM in terms of a g- 
which is not symmetry-adapted (to the S s symmetric group). 
In order to obtain similar expressions involving Sg symmetry-adapted RDM, 

the specific basis functions of the IRs for each S s are needed. We will develop the 
symmetry adaptation for the simplest case g = 3 which, as has been mentioned in 
the introduction, is required in spin-adapted reduced Hamiltonian theory as well as 
in other fields where the 3-RDM are employed. 

Since the three-electron states are related only with the antisymmetric (B) 
and the two-dimensional (E) IRs of the group $3, the totally symmetric (A) IR can 

31-~prl be ignored (see appendix). So, the "-'qst matrix elements, in the sum Y-z 3mprt "-'q,t , must 
be expressed as a linear combination of the corresponding B- and E-adapted matrix 
elements. In what follows, the notation 3DPsrt(E1, E2)means  that the upper trio 
indices denote a function of  the E1 type and the lower trio ones a function of the 
E2 type. The symbols 3D(B), 3D(E1) and 3D(E2) denote that both the upper and 
lower trios belong to the same type B, E1 or E2, respectively. In all cases related 
with the two-dimensional IR, the same component a or b must be used to express 
both trios, the upper and the lower one. Both possibilities lead to identical matrix 
elements but, obviously, the matrix elements obtained through a mixture of functions 
a and b would be zero. 

Note that the symmetry adaptation implies an important reduction of the size 
of  the matrices which must be handled. For a basis set of K orbitals, the order of 
the 3-RDM in the original basis is K 3, while the orders of the blocks B and E are 
( ~ ) and 2( ~ )+ 2( ~ ), respectively. 

Depending on relations among indices in the trios, we can distinguish several 
of 3Dps~t matrix elements: types 

(i-1) p < r < l a n d  q < s < l  

3npr l  3npr l  = 2 3DP~](E1) ' 
L~'qsl + ~'sql -3 

313prl 31-.iprt 1[ 31-~prlrgt, ~ + 2  3D;rslt(E2) ]" 
L"qsl - -  ~'sql = "~ L~qsl k L')  
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(i-2) p < r< 1 and q< s= l 

310prS--qs" + 3D:::- ~3 3D:::(EI)' 

3DPr'- qs, -- 3DsPqrsS = ~ 3DqPsrsS(E2, Ell; 

(i-3) p < r < l a n d  q < l < s  

31-~prl 313prl 1 3DP~t(E1)__ 
""qsl + "Jsql = -- -3 

3nprt 3np,t 1 3D:~I(B ) + 
~" qsl - -  ~ ' sq l  = -  -3 

1 3r~prlr'z'l E2), 
- - ~  ~"qls k ~" ~' 

1 3DPq~t(E2, El); 

(i-4) p < r < l a n d  q = l < s  

31-)prq + 31-)prq = N r ~  3 O : q q ( E 1 )  ' 
- - q sq  ~ sqq 3 

' "3 l..)prq 3 ]-)prq _ = -  3D o E2,prq( El); --  qsq -- sqq 

(i-5) p < r < l a n d  l < q < s  

3 n p r l  3r~prl  
L.,qs I + L.,sq I 

1 3Dfqr j 1 3nprt:~,, E2), 3 (El)  -I- ~ -  ~' lqs  k x ' l ,  

13 prt 1 L'tqs3r~prl(E2"E1); 31r)prl~'qsl- 3FIprl=L"sq l 13 3D~srt(B)- -3 Diqs (E2)- - ~  

(i-6) p < r = l a n d  q < s = l  

31.)prr 3l_)prr = _1 3DP~(E1), 
--  qrr + -- rqr 3 

31")prr-- qrr - -  3Dfq r = 3DPrrr(El); 

(i-7) p < r = l a n d  q < l < s  

31--)prr-- qsr + 3OPrrr = ~6 3DPfr(E1)+ --~1 3oPrr(E1, E2), 

31")prr---- qsr 30: : :  = N/~1 [_ 3oP ~ (El)+ 3OqPr~r (El, E2)]; 
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(i-8) 

(i-9) 

p < r = l a n d  q= l < s  

3Dprr--rsr + 3DsPrrrr = I 3Dfrr(E1) ' 
3 

3rIP_rsrr r - 3DFr = - 3Offf (E1); 

p < r = l a n d  l < q < s  

3 l)prr 3OsPq; 
- qsr + = -  

3l')prr _ 3OsPqf = - _ _  wqsr 

47  3Dfq~(E1) 1 3Df~r(E1, E2), 
6 

1 [3Dfqf(E1)+ 1 3D~r(E1, E2)]; 
47 7 

(i-10) p < l < r a n d  q < l < s  

3rlprl 3Fiprl 1 3O~/sr(E1) q " 1 3 o P l r ( E 2 )  
L.,qs I or L.,sq I = -~ -2 

1 3nplr:~'l E2)+ 1 3FIptrglg") El), 
+ - ~  " qls "'-'~' - ~  "'qls V - '~ '  

3r~prt 3r~prt = 1 3 n p l r r n  a + 1 1 3DPlr(E2) *'qs' -- t"sql -~ L.,ql s k ~ l  --~ 3Oq~/sr(E1 ) -t- 

1 3D~r(E1, E 2 ) _  - 
2-,/3 

(i-ll) p < l < r a n d q = l < s  

3l')prq or 31")prq _= 4 7  3D_l~_r (E1)  + 
- -  qsq -- sqq 6 

1 3Dff£r(E2, El); 

3 pqr Oqq s (E2, El), 

3Fjprq 31Dprq = 1 [ 3Ogsr(E1) 1 3DPqqqf(E2, E1)]" 
- q s q  - -sq  4 7  - ' 

(i-12) p < l < r a n d  l < q < s  

1 3nptr 1 30~ ~ (E2) 313prlL.,qs l "t- 3r~prl,..,sql = -6 *'tqs (El) - -~ 

1 3nplr:~'l E2)+ 1 3nplr(~9 El), 
2.f3 ""lqs "~"*' - ~  L"lqs " ~ " '  
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3l.~prl 313prl  1 3nPlrrl~ ~ q" 1 3 ptr 1 3 plr 
L.'qs I - -  L.'sq I = - -  -~ L.'lq s k o :  -'~ Diq s (E l )  - ~ Diq s (E2) 

+ 

(i-13) p = l < r a n d  q= 

1 3nptrrwl E2) 1 3nplrr~'° El); 
L..'lq s I L~., - -  2----~ L"lqs k~-'~" 

l < s  

3l_)prp + 31.)prp = 1 3DpPppsr(E1) ' 
- -  psp --  spp 3 

3r~p~p _ 3r)p~p = 3DPppr(E1) ;  
psp ~ spp 

(i-14) p = l < r a n d  l< 

3]-)prp -t- 3]-)prp = 
-- qsp --  sqp 

3 I o p r p  _ 3I ' )prp = 
- -  qsp ~ sqp 

q < s  

w~- 3Dpppff(E1 ) 1 30 qp;(gl, e2) ' 
6 - ~  

3 ppr 1 3DPqpsr (El, E2)]; [ Dins(E1) + -~- 

(i-15) l < p < r a n d  l < q < s  

31.~prl 3r.~prl = 1 3 lpr 1 3 tpr 
L.,qs I "b L..,sq I -~  D]q s (El) -b -~- D~q s (E2) 

1 3nlPrr':'l E2) 1 3 lpr 
2~,[-J "~'lqs ' , " ' "  - -  2---~ Oiqs (E2, El), 

31qprl  3 ~ p r l  1 3nlpr t . l : t ,  ~ + 1 3 lpr 1 3 tpr 
~"qsl - -  LIsql  = -3 "-'lqs I.,-,j ~ O]q s (El) q- ~- 'O]q s (E2) 

1 3ntprr~'l E2)+ 1 3ntPrr~'o El). 
"-1- - - ~  L~.lq s , , .~l ,  - ~  L.,lq s kL.~.,, 

(ii-1) p < l  and q < s < l  

3r~pp l  ~ 3OgsPll(E1); 
L" qsl = 3 

(ii-2) p < l a n d  q < s = l  

31)pps 1 3Dp~S(E1); 
- qss 3 
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(ii-3) 

(ii-4) 

(ii-5) 

(ii-6) 

(ii-7) 

p < l  and q < l < s  

3nppl -- N t~ 3 ppl 1 3D~lsppl(E1, E2); "qsl 6 D~t s (E l ) -  - ~  

p < l  and q = l < s  

3 D p p  q 1 3 ppq . 
- -qsq = --  -3 Oqqs  (El), 

p < l  and l < q < s  

3nppl ~ 3 ,pt 1 31"3ppl[l:i'l E2); 
"-'qsl - 6 Diq s (El)+ -~- "-'tq, ,'-", 

l < p  and q < s < l  

3 n p p l  ~ 3 lpp 
L " q s t ' ~  3 O~st(E1); 

l < p  and q < s = l  

31.)pps _ 1 3DqssSpp (El)," 
-q~  3 

(ii-8) l < p  and q < l < s  

3r~ppl ~ [ 2  3 lpp 1 3 lpp 
L"qsl - -  6 O~l s (El) - -~-  Oq l  s (El, E2); 

(ii-9) l < p  and q = l < s  

3l..)ppq 1 D~qs (El), = --  _ 3 qpp . 

--  qsq 3 

(ii-10) l < p  and l < q < s  

313ppt ~12 3 tpp 1 3ntpprr:l E2). 
L"qsl - -  6 O~q s ( E l )  + , - - - ,  

(iii-1) p<landq<l  

3r~pplL,,qq l = -32 3D:ff(E1); 
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(iii-2) 

(iii-3) 

p < l  and l<q 

313ppl 2 3 ppl . 
~"qql = 3 Diqq ( E l ) ,  

l<p and l<q 

3r,jppl = 2 3 lpp 
"qql -~ D~qq(E1). 

4. Results and comments 

Table 1 describes the energies of some excited states (called 1 and 2) of some 
first-row atoms (the corresponding ground-state energies have been previously 
reported [17]). The experimental energies are those reported by Moore [18] or, in 
the beryllium case, those obtained from the full configuration interaction (FCI) 
method [4]. In all cases, the relativistic correction [19] has been subtracted in order 
to establish an appropriate comparison with our methods. The calculated energies 
have been obtained using the double-zeta basis sets reported by Clementi et al. [20]; 
previously, the initial Slater functions were transformed to an orthonormal set. 

Table  1 

Energies  (in a.u.) for  two excited states of  the f i rs t-row a toms obtained with the IP and 

the IT models .  Co lumns  4 and 6 mean  the s tandard deviat ion according to formula  (12). 

A tom Exptal. IP fin, IT  trrr 

Be(1S)I  - 14.3014 - 14.3805 0.034 - 14.3364 0.009 

Be(1S)2 - 13.9851 - 13.9505 0.040 - 13. 9696 0.015 

B(4P)I  - 24.5209 - 24.6928 0.052 - 24.6001 0,033 

B(2D)2 - 24.4341 - 24.5764 0.049 - 24.4693 0.030 

C(1D)I - 37.7855 - 38.1574 0.048 - 37.9570 0.036 

C(5S)2 - 37.6782 - 37.9993 0.059 - 37.8750 0.041 

N(2D)I  - 54.4974 - 55.0543 0.044 - 54.7909 0.035 

N(2p)2 - 54.4536 - 55.0414 0.050 - 54.7764 0.039 

O(~D)I - 74.9887 - 75.7624 0.044 - 75.4791 0.036 

O(1S)2 - 74.9071 - 75.7604 0.049 - 75.4789 0.040 

Column 3 describes the results obtained through a direct approximation of 
2-RDM handling the eigenvectors of 2-SRH. The results in column 5 have been 
obtained approximating the 3-RDM and contracting this matrix to the two-electron 
space through the algorithm reported in section 3. 
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The quality of the results is analyzed by comparison with the experimental 
values and through the test of the hypervirial theorem. When this theorem is applied 
to the first-order replacement operator IEj, the following is obtained: 

P/j = (~1[~ ,  IE j ] [~ )  = ,~.,[°H, 2O]iz, jl , (11) 
l 

where °Hff = {ij lkl}.  
All of  the matrix elements Pij must be zero when the 2-RDM is the exact one, 

so the deviation from zero of these elements must be an appropriate criterion to 
evaluate the quality of  the approximation used. In other words, P is a kind of error 
matrix. If the basis set has K functions, the mean tre of the matrix elements Pij is 

o'p = ~ (12) 

and its values are written in columns 4 and 6 of  table 1. These results, as well as 
the energies, point out a better behaviour of the IT model. 

Appendix. The basis functions of  the irreducible representations in the permutat ion 
groups $2 and $3 

Group  S 2 has two irreducible representations. The basis functions for the 
symmetric representation are [1] 

1 
(pq; +) = - - ~  (pq + qp), p < q; (13) 

(pp; +) = pp (14) 

and for the antisymmetric one 

1 
(pq ; - )  = ~ (pq - qp), p < q, (15) 

where pq means the product of orbitals p and q. 
Group $3 has three irreducible representations, a totally symmetric one A, 

one-dimensional; a totally antisymmetric one B, also one-dimensional, and a two- 
dimensional one E. Their basis functions are [2] 

(i) Representation A 

(ppp; A) = ppp, (16) 

1 
(ppr; A) = ~ (ppr + prp + rpp), p < r, (17) 



188 A. Torre et al., Contraction of density matrices 

1 
(prr; A) = ~ (prr  + rpr + rrp), p < r, 

this symmetry. 

+ rlp + lpr - rpl - plr - lrp), p < r < l. (20) 

(21) 

where prl,  prr,  ppr,  etc. are simple products of the corresponding functions and a 
and b label the two components of the two-dimensional representation E. 
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(18) 

1 
(prl; A) = ~ (prl  + rip + lpr + rpl + plr + lrp), p < r < l. (19) 

Due to the Pauli principle, a three-electron space function cannot belong to 

(ii) Representation B 

(iii) Representation E 
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